

STC OT391 Sensitive Gate Silicon Controlled Rectifier

Reverse Blocking Thyristor

PNPN device designed for line-powered general purpose applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in a cost effective plastic TO-92 package.

- Sensitive Gate Allows Direct Triggering by Microcontrollers and Other Logic Circuits
- On-State Current Rating of 0.8 Amperes RMS at 80°C
- Surge Current Capability 10 Amperes
- Immunity to dV/dt 20 V/µsec Minimum at 110°C
- Glass-Passivated Surface for Reliability and Uniformity
- Blocking Voltage to 600 Volts

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1.) (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz; Gate Open)	V _{DRM,} V _{RRM}	600	Volts
On-State RMS Current (T _C = 80°C) 180° Conduction Angles	I _{T(RMS)}	0.8	Amp
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = 25°C)	I _{TSM}	10	Amps
Circuit Fusing Consideration (t = 10 ms)	I ² t	0.415	A ² s
Forward Peak Gate Power $(T_A = 25^{\circ}C, \text{ Pulse Width } \leq 1.0 \mu\text{s})$	P _{GM}	0.1	Watt
Forward Average Gate Power (T _A = 25°C, t = 20 ms)	P _{G(AV)}	0.10	Watt
Forward Peak Gate Current $(T_A = 25^{\circ}C, \text{ Pulse Width } \leq 1.0 \mu\text{s})$	I _{GM}	1.0	Amp
Reverse Peak Gate Voltage $(T_A = 25^{\circ}C, \text{ Pulse Width } \leq 1.0 \mu\text{s})$	V_{GRM}	5.0	Volts
Operating Junction Temperature Range @ Rate V _{RRM} and V _{DRM}	TJ	-40 to 110	°C
Storage Temperature Range	T _{stg}	–40 to 150	°C

(1) VDRM and VRRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant source such that the voltage ratings of the devices are exceeded.

SCR 0.8 AMPERES RMS 600 VOLTS

TO-92 (TO-226) CASE 029 STYLE 10

PIN ASSIGNMENT		
1	Cathode	
2	Gate	
3	Anode	

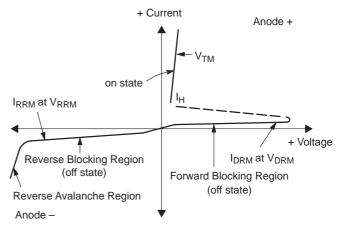
OT391

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance – Junction to Case – Junction to Ambient	R _{θJC} R _{θJA}	75 200	°C/W
Lead Solder Temperature (<1/16" from case, 10 secs max)	T _L	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

ELECTRICAL CHARACTERISTICS (TC = 25 C di	ness otherwise neted,		1	_		
Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Peak Repetitive Forward or Reverse Blocking Current (Note 1.) $(V_D = Rated \ V_{DRM} \ and \ V_{RRM}; \ R_{GK} = 1.0 \ k\Omega)$	T _C = 25°C T _C = 110°C	I _{DRM} , I _{RRM}	_ _	_ _	10 0.1	μA mA
ON CHARACTERISTICS						
Peak Forward On–State Voltage ^(*) (I _{TM} = 1.0 Amp Peak @ T _A = 25°C)		V_{TM}	_	_	1.3	Volts
Gate Trigger Current (Continuous dc) (Note 2.) (V _{AK} = 12 V, R _L = 100 Ohms)	T _C = 25°C	I _{GT}	-	6	8	μА
Holding Current (Note 2.) (V _{AK} = 12 V, I _{GT} = 0.5 mA)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	lΗ	-	0.5 -	5.0 10	mA
Latch Current $(V_{AK} = 12 \text{ V}, I_{GT} = 0.5 \text{ mA}, R_{GK} = 1.0 \text{ k})$	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	ΙL	-	0.6 -	10 15	mA
Gate Trigger Voltage (Continuous dc) (Note 2.) (V _{AK} = 12 V, R _L = 100 Ohms, I _{GT} = 10 mA)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	V_{GT}	-	0.5 -	0.52 1.2	Volts
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off–State Voltage $(V_D = Rated\ V_{DRM},\ Exponential\ Waveform,\ R_{GK} = 1$ $T_J = 110^{\circ}C)$	000 Ohms,	dV/dt	20	35	-	V/µs
Critical Rate of Rise of On–State Current (I _{PK} = 20 A; Pw = 10 μsec; diG/dt = 1.0 A/μsec, Igt = 20 mA)		di/dt	_	_	50	A/μs


^{*}Indicates Pulse Test: Pulse Width ≤ 1.0 ms, Duty Cycle ≤ 1%.

 $[\]begin{array}{ll} \hbox{1.} & R_{GK} = 1000 \mbox{ Ohms included in measurement.} \\ \hbox{2.} & \mbox{Does not include } R_{GK} \mbox{ in measurement.} \\ \end{array}$

OT391

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak on State Voltage
I _H	Holding Current

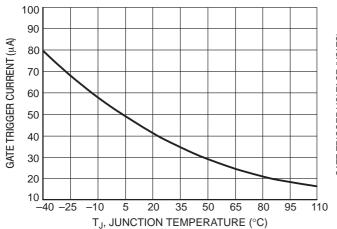


Figure 1. Typical Gate Trigger Current versus Junction Temperature

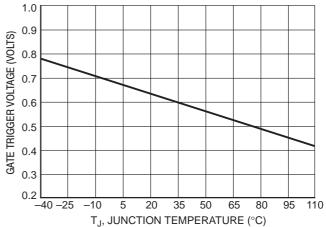


Figure 2. Typical Gate Trigger Voltage versus
Junction Temperature

OT391

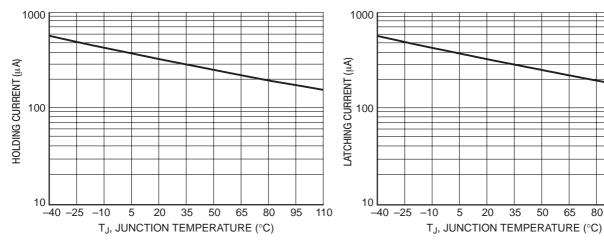


Figure 3. Typical Holding Current versus Junction Temperature

Figure 4. Typical Latching Current versus Junction Temperature

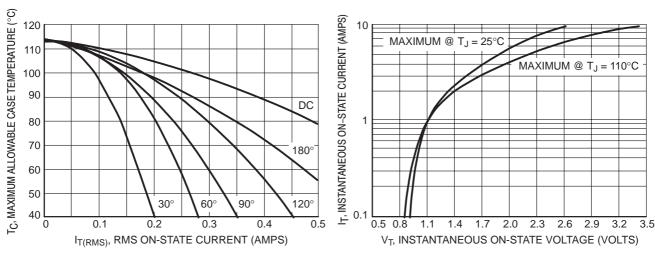


Figure 5. Typical RMS Current Derating

Figure 6. Typical On-State Characteristics